Strona główna Fakty żywieniowe Jak się żywić? Przepisy Historia diety Forum  

  Forum dyskusyjne serwisu www.DobraDieta.pl  FAQ    Szukaj    Użytkownicy    Czat      Statystyki  
  · Zaloguj Rejestracja · Profil · Zaloguj się, by sprawdzić wiadomości · Grupy  

Poprzedni temat «» Następny temat
Rola krzemu
Autor Wiadomość
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Czw Lis 05, 2015 11:32   Rola krzemu

Cytat:
http://www.ncbi.nlm.nih.gov/pubmed/16205932
Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin.
Barel A1, Calomme M, Timchenko A, De Paepe K, Demeester N, Rogiers V, Clarys P, Vanden Berghe D.
Arch Dermatol Res. 2006 Apr;297(10):481. Dosage error in article text.
Arch Dermatol Res. 2006 Feb;297(8):381. Paepe, K De [corrected to De Paepe, K]
Abstract
Chronic exposure of the skin to sunlight causes damage to the underlying connective tissue with a loss of elasticity and firmness. Silicon (Si) was suggested to have an important function in the formation and maintenance of connective tissue. Choline-stabilized orthosilicic acid ("ch-OSA") is a bioavailable form of silicon which was found to increase the hydroxyproline concentration in the dermis of animals. The effect of ch-OSA on skin, nails and hair was investigated in a randomized, double blind, placebo-controlled study. Fifty women with photodamaged facial skin were administered orally during 20 weeks, 10 mg Si/day in the form of ch-OSA pellets (n=25) or a placebo (n=25). Noninvasive methods were used to evaluate skin microrelief (forearm), hydration (forearm) and mechanical anisotropy (forehead). Volunteers evaluated on a virtual analog scale (VAS, "none=0, severe=3") brittleness of hair and nails. The serum Si concentration was significantly higher after a 20-week supplementation in subjects with ch-OSA compared to the placebo group. Skin roughness parameters increased in the placebo group (Rt:+8%; Rm: +11%; Rz: +6%) but decreased in the ch-OSA group (Rt: -16%; Rm: -19%; Rz: -8%). The change in roughness from baseline was significantly different between ch-OSA and placebo groups for Rt and Rm. The difference in longitudinal and lateral shear propagation time increased after 20 weeks in the placebo group but decreased in the ch-OSA group suggesting improvement in isotropy of the skin. VAS scores for nail and hair brittleness were significantly lower after 20 weeks in the ch-OSA group compared to baseline scores. Oral intake of ch-OSA during the 20 weeks results in a significant positive effect on skin surface and skin mechanical properties, and on brittleness of hair and nails.
JW
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Czw Lis 05, 2015 11:41   

Cytat:
http://www.ncbi.nlm.nih.g...les/PMC3546016/
Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy
Lela Munjas Jurkić,1 Ivica Cepanec,2 Sandra Kraljević Pavelić,corresponding author1 and Krešimir Pavelić1
Conclusion
In conclusion, we believe that ortho-silicic acid (H4SiO4) might be a prominent therapeutic agent in humans. Some potential therapeutic and biological effects on bone formation and bone density, Alzheimer disease, immunodeficiency, skin, hair, and nails condition, as well as on tumour growth, have already been documented and are critically discussed in the presented paper. Acid forms of ortho-silicic acid include: choline-chloride-stabilized ortho-silicic acid (ch-OSA) as a specific pharmaceutical formulation of H4SiO4, simple water soluble silicate salts such as sodium silicate (E550; Na2SiO3) or potassium silicate (E560; K2SiO3), and certain water-insoluble forms that, upon contact with stomach juice (HCl), release small, but biologically significant amounts of ortho-silicic acid. The latter involves: colloidal silicic acid (hydrated silica gel), amorphous silicon dioxide (E551), certain types of zeolites such as zeolite A (sodium aluminosilicate, E554; potassium aluminosilicate, E555; calcium aluminosilicate, E556), and the natural zeolite clinoptilolite. However, for some of the above-proposed therapeutic perspectives of both ortho-silicic acid and ortho-silicic acid -releasing derivatives, additional insights into biological mechanisms of action and larger studies on both animals and humans are required.
JW
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Czw Lis 05, 2015 11:54   

Cytat:
http://www.ncbi.nlm.nih.g...PMC3546016/#B17

17 Bowen HJM, Peggs A. Determination of the silicon content of food. J Sci Food Agric. 1984;35:1225–1229. doi: 10.1002/jsfa.2740351114. http://dx.doi.org/10.1002%2Fjsfa.2740351114
Generally, silicon is abundantly present in foods derived from plants such as: cereals, oats, barley, white wheat flour, and polished rice. In contrast, silicon levels are lower in animal foods including meat or dairy products. Furthermore, silicon is present in drinking waters, mineral waters, and in beer as well
JW
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Czw Lis 05, 2015 12:00   

http://www.ncbi.nlm.nih.g...stid969510title
References - krzem
1. Greenwood NN, Earnshaw A. Chemistry of the elements. 2nd. Oxford: Butterworth-Heinemann; 1997.
2. Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging. 2007;11(2):94–97. [PubMed]
3. Treguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Queguiner B. The silica balance in the world ocean: A reestimate. Science. 1995;268(5209):375–379. doi: 10.1126/science.268.5209.375. [PubMed] [Cross Ref]
4. Frey KS, Pottery GD. Plasma silicon and radiographic bone density in weaning quarter horses fed sodium zeolite A. Equine Vet Science. 1991;12:292–296.
5. Pavelic K, Hadzija M. In: Handbook of zeolite science and technology. 1st. Auerbach SM, Carrado KA, Dutta PK, editor. New York: Marcel Dekker; 2003. Medical applications of zeolites; pp. 1143–1174.
6. O'Connor CI, Nielsen BD, Woodward AD, Spooner HS, Ventura BA, Turner KK. Mineral balance in horses fed two supplemental silicon sources. J Anim Physiol Anim Nutr (Berl) 2008;92(2):173–181. doi: 10.1111/j.1439-0396.2007.00724.x. [PubMed] [Cross Ref]
7. Reffitt DM, Jugdaohsingh NR, Thompson RPH, Powel JJ. Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem. 1999;76(2):141–147. doi: 10.1016/S0162-0134(99)00126-9. [PubMed] [Cross Ref]
8. Jugdaohsingh R, Anderson SHC, Tucker KL, Elliot H, Kiel DP, Thompson RPH, Powell JJ. Dietary silicon intake and absorption. Am J Clin Nutr. 2002;75(5):887–893. [PubMed]
9. Smith BL. In: Trace elements in man and animals, TEMA 8. Anke M, Meissner D, Mills CF, editor. New York: Kluwer; 1993. Analysis of hair element levels by age, sex, race, and hair color; pp. 1091–1093.
10. Austin JH. Silicon levels in human tissues. Nobel Symp. 1997. pp. 255–268.
11. Carlisle EM. Silicon: an essential element for the chick. Science. 1972;178:619–621. doi: 10.1126/science.178.4061.619. [PubMed] [Cross Ref]
12. Fregert S. Studies on silicon in tissues with special reference to skin. J Invest Dermatol. 1958;31(2):95–96. [PubMed]
13. European Food Safety Authority. Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of silicon. The EFSA Journal. 2004;60:1–11.
14. Scientific Committee for Food. Nutrient and energy intakes for the European Community. Reports of the Scientific Committee for Food (Thirty-first series) Luxembourg: European Commission; 1993.
15. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington: National Academy Press; 2000. [PubMed]
16. Varo P, Koivistoinen P. Mineral element composition of Finnish foods. Acta Agric Scand. 1980;22:165–171.
17. Bowen HJM, Peggs A. Determination of the silicon content of food. J Sci Food Agric. 1984;35:1225–1229. doi: 10.1002/jsfa.2740351114. [Cross Ref]
18. Bellia JP, Birchall JD, Roberts NB. Beer: a dietary source of silicon. Lancet. 1994;343(8891):235. [PubMed]
19. Pennington JAT. Silicon in food and diets. Food Addit Contam. 1991;8(1):97–118. doi: 10.1080/02652039109373959. [PubMed] [Cross Ref]
20. McNaughton SA, Bolton-Smith C, Mishra GD, Jugdaohsingh R, Powell JJ. Dietary silicon intake in post-menopausal women. Br J Nut. 2005;94:813–817. doi: 10.1079/BJN20051548. [PubMed] [Cross Ref]
21. Jugdaohsingh R, Calomme MR, Robinson K, Nielsen F, Anderson SHC, D'Haese P, Geusens P, Loveridge N, Thompson RPH, Powell JJ. Increased longitudinal growth in rats on a silicon-depleted diet. Bone. 2008;43(3):596–606. doi: 10.1016/j.bone.2008.04.014. [PMC free article] [PubMed] [Cross Ref]
22. Van Dyck K, Van Cauwenbergh R, Robberecht H, Deelstra H. Bioavailability of silicon from food and food supplements. Fresenius J Anal Chem. 1999;363:541–544. doi: 10.1007/s002160051243. [Cross Ref]
23. Barnett PR, Skougstad MW, Miller KJ. Chemical characterization of a public water supply. J Am Water Works Assoc. 1969;61:61–68.
24. Sripanyakorn S, Jugdaohsingh R, Elliott H, Walker C, Mehta P, Shoukru S. The silicon content of beer and its bioavailability in healthy volunteers. Br J Nutr. 2004;91(3):403–409. doi: 10.1079/BJN20031082. [PubMed] [Cross Ref]
25. Jugdaohsingh R, Reffitt DM, Oldham C, Day JP, Fifield LK, Thompson RPH. Oligomeric but not monomeric silica prevents aluminum absorption in humans. Am J Clin Nutr. 2000;71(4):944–949. [PubMed]
26. Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Cresswell RG. et al. Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem. 1998;69(3):177–180. doi: 10.1016/S0162-0134(97)10016-2. [PubMed] [Cross Ref]
27. Calomme R, Cos P, D’Haese PC, Vingerhoets R, Lamberts LV, De Broe ME, In: Metal ions in biology and medicine. Volume 5. Collery P, Brätter P, Negretti De Brätter V, Khassanova L, Etienne JC, editor. Paris: John Libbey Eurotext; 1998. Absorption of silicon in healthy subjects; pp. 228–232.
28. Berlyne GM, Adler AJ, Ferran N, Bennett S, Holt J. Silicon metabolism. I. Some aspects of renal silicon handling in normal man. Nephron. 1986;43(1):5–9. doi: 10.1159/000183709. [PubMed] [Cross Ref]
29. European Food Safety Authority. Scientific opinion of the panel on food additives and nutrient sources added to food. The EFSA Journal. 2009;948:1–23.
30. Budavari S. Merck index: An encyclopaedia of chemicals, drugs, and biologicals. 11th. Rahway: Merck & Co; 1989. pp. 342–343.
31. Eisinger J, Clairet D. Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study. Magnes Res. 1993;6(3):247–249. [PubMed]
32. Lassus A. Colloidal silicic acid for oral and topical treatment of aged skin, fragile hair and brittle nails in females. J Int Med Res. 1993;21(4):209–215. [PubMed]
33. Schwarz K. Silicon, fibre, and atherosclerosis. Lancet. 1977;1(8009):454–457. [PubMed]
34. Schwarz K, Ricci BA, Punsar S, Karvonen MJ. Inverse relation of silicon in drinking water and atherosclerosis in Finland. Lancet. 1977;1(8010):538–539. [PubMed]
35. Candy JM, Edwardson JA, Klinowski J, Oakley AE, Perry EK, Perry RH. In: Senile dementia of the Alzheimer type. Traber J, Gispen WH, editor. Heidelberg: Springer; 1985. Co-localisation of aluminum and silicon in senile plaques: implications for the neurochemical pathology of Alzheimer's disease; pp. 183–197.
36. Gonzalez-Munoz MJ, Meseguer I, Sanchez-Reus MI, Schultz A. Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes. Food Chem Toxicol. 2008;46(3):1111–1118. doi: 10.1016/j.fct.2007.11.006. [PubMed] [Cross Ref]
37. Maehira F, Ishimine N, Miyagi I, Eguchi Y, Shimada K. Anti-diabetic effects including diabetic nephropathy of anti-osteoporotic trace minerals on diabetic mice. Nutrition. 2010;27(4):488–495. [PubMed]
38. Dobbie JW, Smith MJB. The silicon content of body fluids. Scott Med J. 1982;27:17–19. [PubMed]
39. Carlisle EM. In: Biochemistry of the essential ultratrace elements. Frieden E, editor. New York: Plenum Press; 1984. Silicon; pp. 257–291.
40. Bissé E, Epting T, Beil A, Lindinger G, Lang H, Wieland H. Reference values for serum silicon in adults. Anal Biochem. 2005;337(1):130–135. doi: 10.1016/j.ab.2004.10.034. [PubMed] [Cross Ref]
41. Van Dyck K, Robberecht H, Van Cauwenbergh R, Van Vlaslaer V, Deelstra H. Indication of silicon essentiality in humans. Serum concentrations in Belgian children and adults, including pregnant women. Biol Trace Elem Res. 2000;77(1):25–32. doi: 10.1385/BTER:77:1:25. [PubMed] [Cross Ref]
42. Adler AJ, Berlyne GM. Silicon metabolism II. Renal handling in chronic renal failure patients. Nephron. 1986;44:36–39. [PubMed]
43. D' Haese PC, Shaheen FA, Huraid SO. Increased silicon levels in dialysis patients due to high silicon content in the drinking water, inadequate water treatment procedures, and concentrate contamination: a multicentre study. Nephrol Dial Transplant. 1995;10:1838–1844. [PubMed]
44. Maehira F, Motomura K, Ishimine N, Miyagi I, Eguchi Y, Teruya S. Soluble silica and coral sand suppress high blood pressure and improve the related aortic gene expressions in spontaneously hypertensive rats. Nutr Res. 2011;31(2):147–156. doi: 10.1016/j.nutres.2010.12.002. [PubMed] [Cross Ref]
45. Carlisle EM. The nutrition essential of silicon. Nutr Rev. 1982;40:193–198. [PubMed]
46. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167:279–280. doi: 10.1126/science.167.3916.279. [PubMed] [Cross Ref]
47. Carlisle EM. In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J Nutr. 1976;106:478–484. [PubMed]
48. Carlisle EM. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr. 1980;110:1046–1055. [PubMed]
49. Carlisle EM. Silicon localization and calcification in developing bone. Fed Proc. 1969;28:374.
50. Carlisle EM. A relationship between silicon and calcium in bone formation. Fed Proc. 1970;29:565.
51. Schwarz K, Miline DB. Growth promoting effects of silicon in rats. Nature. 1972;239(537):333–334. doi: 10.1038/239333a0. [PubMed] [Cross Ref]
52. Seabron CD, Nielsen FH. Dietary silicon affects acid and alkaline phosphatase and 45calcium uptake in bone of rats. J Trace Elem Exp Med. 1994;7:1–11.
53. Seabron CD, Nielsen FH. Dietary silicon and arginine affect mineral element composition of rat femur and vertebra. Biol Trace Elem Res. 2002;89:239–250. doi: 10.1385/BTER:89:3:239. [PubMed] [Cross Ref]
54. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH. et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127–135. doi: 10.1016/S8756-3282(02)00950-X. [PubMed] [Cross Ref]
55. Keeting PE, Oursler MJ, Wiegand KE, Bonde SK, Spelsberg TC, Riggs BL. Zeolite A increases proliferation, differentiation, and transforming growth factor production in normal adult human osteoblast like cells in vitro. J Bone Miner Res. 1992;7(11):1281–1289. [PubMed]
56. Schutze, Oursler MJ, Nolan J, Riggs BL, Spelzberg TC. Zeolite A inhibits osteoclast mediated bone resorption in vitro. J Cell Biochem. 1995;58(1):39–46. doi: 10.1002/jcb.240580106. [PubMed] [Cross Ref]
57. Carlisle EM. A silicon-molybdenum interrelationship in vivo. Fed Proc. 1979;38:553.
58. Carlisle EM, Curran MJ. Effect of dietary silicon and aluminum on silicon and aluminum levels in rat brain. Alzheimer Dis Assoc Dis. 1986;1(2):83–89. [PubMed]
59. Exley C, Korchazhkina O, Job D, Strekopytov S, Polwart A, Crome P. Non-invasive therapy to reduce the body burden of aluminium in Alzheimer's disease. J Alzheimers Dis. 2006;10(1):17–24. [PubMed]
60. Muller SA, Posner AS, Firschein HE. Effect of vitamin D deficiency on the crystal chemistry of bone mineral. Proc Soc Exp Biol Med. 1966;121(3):844–846. [PubMed]
61. Carlisle EM. Silicon: a requirement in bone formation independent of vitamin D. Calcif Tissue Int. 1981;33:27–34. doi: 10.1007/BF02409409. [PubMed] [Cross Ref]
62. Spector TD, Calomme MR, Anderson SH, Clement G, Bevan L, Demeester N. et al. Choline-stabilized orthosilicic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial. BMC Musculoskelet Disord. 2008;9:85–95. doi: 10.1186/1471-2474-9-85. [PMC free article] [PubMed] [Cross Ref]
63. Marcus R. Clinical review 76: the nature of osteoporosis. J Clin Endocrinol Metab. 1996;81(1):1–5. doi: 10.1210/jc.81.1.1. [PubMed] [Cross Ref]
64. Moukarzel AA, Song M, Buchman AL, Ament ME. Silicon deficiency may be involved in bone disease of parenteral nutrition. J Am Coll Nutr. 1992;11:584.
65. Calomme M, Geusens P, Demeester N, Behets GJ, D'Haese P, Sindambiwe JB. et al. Partial prevention of long-term femoral bone loss in aged ovariectomized rats supplemented with choline-stabilized orthosilicic acid. Calcif Tissue Int. 2006;78(4):227–232. doi: 10.1007/s00223-005-0288-0. [PubMed] [Cross Ref]
66. Macdonald HM, Hardcastle AC, Jugdaohsingh R, Fraser WD, Reid DM, Powell JJ. Dietary silicon interacts with oestrogen to influence bone health: Evidence from the Aberdeen Prospective Osteoporosis Screening Study. Bone. 2012;50(3):681–687. doi: 10.1016/j.bone.2011.11.020. [PubMed] [Cross Ref]
67. Barel A, Calomme M, Timchenko A, De Paepe K, Demeester N, Rogiers V, Clarys P, Vanden Berghe D. Effects of oral intake of choline-stabilized orthosilicic acid on skin, nails, and hair in women with photodamaged skin. Arch Dermatol Res. 2005;297:147–153. doi: 10.1007/s00403-005-0584-6. [PubMed] [Cross Ref]
68. Wickett RR, Kossmann E, Barel A, Demeester N, Clarys P, Vanden Berghe D. et al. Effect of oral intake of choline-stabilized orthosilicic acid on hair tensile strength and morphology in woman with fine hair. Arch Dermatol Res. 2007;299(10):499–505. doi: 10.1007/s00403-007-0796-z. [PubMed] [Cross Ref]
69. Perl DP, Brody AR. Alzheimer's disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurons. Science. 1980;208(4441):297–309. doi: 10.1126/science.7367858. [PubMed] [Cross Ref]
70. Perl DP. Relationship of aluminium to Alzheimer's disease. Environ Health Perspect. 1985;63:149–153. [PMC free article] [PubMed]
71. Candy JM, Oakley AE, Klinowski J, Carpenter TA, Perry EK, Blessed G. et al. Aluminosilicates and senile plaque formation in Alzheimer's disease. Lancet. 1986;1(8477):354–357. [PubMed]
72. González-Muñoz MJ, Pena A, Meseguer I. Role of beer as a possible protective factor in preventing Alzheimer’s disease. Food Chem Toxicol. 2008;46(1):49–56. doi: 10.1016/j.fct.2007.06.036. [PubMed] [Cross Ref]
73. Edwardson JA, Moore PB, Ferrier IN, Lilley JS, Newton GWA, Barker J. et al. Effect of silicon on gastrointestinal absorption of aluminium. Lancet. 1993;342(8865):211–212. doi: 10.1016/0140-6736(93)92301-9. [PubMed] [Cross Ref]
74. Birchall JD, Exley C, Chappell JS, Phillips MJ. Acute toxicity of aluminium to fish eliminated in silicon-rich acids waters. Nature. 1989;338:146–148. doi: 10.1038/338146a0. [Cross Ref]
75. Hammond KE, Evans DE, Hodson MJ. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil. 1995;173(1):89–95. doi: 10.1007/BF00155521. [Cross Ref]
76. Exley C. A biogeochemical cycle for aluminium. J Inorg Biochem. 2003;97(1):1–7. doi: 10.1016/S0162-0134(03)00274-5. [PubMed] [Cross Ref]
77. Birchall JD, Chappell JS. Aluminium, water chemistry, and Alzheimer's disease. Lancet. 1989;1(8644):953. [PubMed]
78. Taylor GA, Newens AJ, Edwardson JA, Kay DW, Forster DP. Alzheimer's disease and the relationship between silicon and aluminium in water supplies in northern England. J Epidemiol Community Health. 1995;49(3):323–324. doi: 10.1136/jech.49.3.323. [PMC free article] [PubMed] [Cross Ref]
79. Davenward S, Bentham P, Wright J, Crome P, Job D, Polwart A, Exley C. Silicon-rich mineral water as a non-invasive test of the ‘aluminum hypothesis’ in Alzheimer's disease. J Alzheimers Dis. 2012. to be published. [PubMed]
80. Exley C, Schneider C, Doucet FJ. The reaction of aluminium with silicic acid in acidic solution: an important mechanism in controlling the biological availability of aluminium. Coord Chem Rev. 2002;228(2):127–135. doi: 10.1016/S0010-8545(02)00077-2. [Cross Ref]
81. Antonini JM, Roberts JR, Yang HM, Barger MW, Ramsey D, Castranova V. et al. Effect of silica inhalation on the pulmonary clearance of a bacterial pathogen in Fischer 344 rats. Lung. 2000;178(6):341–350. doi: 10.1007/s004080000038. [PubMed] [Cross Ref]
82. Antonini JM, Yang HM, Ma JY, Roberts JR, Barger MW, Butterworth L. et al. Subchronic silica exposure enhances respiratory defense mechanisms and the pulmonary clearance of Listeria monocytogenes in rats. Inhal Toxicol. 2000;12(11):1017–1036. doi: 10.1080/08958370050164635. [PubMed] [Cross Ref]
83. Kumar RK. Quantitative immunohistologic assessment of lymphocyte populations in the pulmonary inflammatory response to intratracheal silica. Am J Pathol. 1989;135(4):605–614. [PMC free article] [PubMed]
84. Koo HC, Ryu S-H, Ahn HJ, Jung WK, Park YK, Kwon NH. et al. Immunostimulatory effects of the anionic alkali mineral complex BARODON on equine lymphocytes. Clin Vaccine Immunol. 2006;13(11):1255–1266. doi: 10.1128/CVI.00150-06. [PMC free article] [PubMed] [Cross Ref]
85. Yoo BW, Choi SI, Kim SH, Yang SJ, Koo HC, Seo SH. et al. Immunostimulatory effects of anionic alkali mineral complex solution Barodon in porcine lymphocytes. J Vet Sci. 2001;2(1):15–24. [PubMed]
86. Zuckermann FA, Husmann RJ. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology. 1996;87(3):500–512. [PMC free article] [PubMed]
87. Yoo BW, Choi SI, Kim SH, Yang SJ, Koo HC, Kown NH. et al. Immunostimulatory effects of anionic alkali mineral complex solution Barodon in porcine lymphocytes. J Swine Health Prod. 2002;10:265–270. [PubMed]
88. Park BK, Park YH, Seo KS. Lymphocyte subpopulations of peripheral blood in pigs treated with an ionized alkali mineral complex. J Vet Sci. 1999;24:67–74.
89. Moore BR, Krakowska S, Robertson JT. Evaluation of an immunostimulant in preventing shipping related respiratory disease. J Equine Vet Sci. 1996;16:78. doi: 10.1016/S0737-0806(96)80160-2. [Cross Ref]
90. Flaminio MJ, Rush BR, Shuman W. Immunologic function in horses after non-specific immunostimulant administration. Vet Immunol Immunopathol. 1998;63(4):303–315. doi: 10.1016/S0165-2427(98)00111-1. [PubMed] [Cross Ref]
91. Oner G, Cirrik S, Bakan O. Effects of silica on mitochondrial functions of the proximal tubule cells in rats. Kidney Blood Press Res. 2005;28(4):203–210. doi: 10.1159/000086006. [PubMed] [Cross Ref]
92. Libau F. Structural chemistry of silicates. Berlin: Springer; 1985.
93. Cejka J, Heyrovsky J, editor. Zeolites and ordered mesoporous materials: progress and prospects. Amsterdam: Elsevier; 2005. (Stud Surf Sci Catal).
94. Baerlocher C, Meier WH, Olson DH. Atlas of zeolite framework types. 6th. Amsterdam: Elsevier; 2007.
95. Flaningen EM. In: Proceedings of the 5th international conference of zeolites. Rees LV, editor. London: Heyden; 1980. Molecular sieve zeolite technology – the first five years; pp. 760–780.
96. Sersale R. Natural zeolites: processing, present and possible applications. Stud Surf Sci Catal. 1985;24:503–512.
97. Naber JE, De Jong KP, Stork WHJ, Kuipers HPCE. Post industrial application of zeolite catalysis. Stud Surf Sci Catal. 1994;84:2197–2220.
98. Pavelić K. Medical News. 1998. pp. 21–22.
99. Colella C. Natural zeolites in environmentally friendly processes and applications. Stud Surf Sci Catal. 1999;125:641–655.
100. Garaces JM. In: Proceedings of the 12th international conference of zeolites. Treacz MMJ, Marcus BK, Misher ME, Higgins JB, editor. Warrendale: Materials Research Society; 1999. Observations on zeolite applications; pp. 551–566.
101. Mumpton FA. La roca magica: uses of natural zeolites in agriculture and industry. Proc Natl Acad Sci. 1999;96(7):3463–3470. doi: 10.1073/pnas.96.7.3463. [PMC free article] [PubMed] [Cross Ref]
102. Yang RT. Adsorbents, fundamentals and applications. New York: John Wiley & Sons Inc; 2003.
103. Loidelsbacher T. Process for manufacturing fertilizers or soil amendments from mineral and organic components. Munich: European Patent Publication (EP 0444392 B1); 1993.
104. Rodriguez-Fuentes G, Barrios MA, Iraizoz A, Perdomo I, Cedre B. Enterex: Anti-diarrheic drug based on purified natural clinoptilolite. Zeolites. 1997;19:441–448. doi: 10.1016/S0144-2449(97)00087-0. [Cross Ref]
105. Pavelić K, Hadzija M, Bedrica L, Pavelić J, Dikić I, Katić M. Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J Mol Med. 2001;78(12):708–720. doi: 10.1007/s001090000176. [PubMed] [Cross Ref]
106. Katic M, Bosnjak B, Gal-Troselj K, Dikic I, Pavelic K. A clinoptilolite effects on cell media and the consequent effects on tumor cells in vitro. Front Biosci. 2006;11:1722–1732. doi: 10.2741/1918. [PubMed] [Cross Ref]
107. Grce M, Pavelić K. Antiviral properties of clinoptilolite. Microporous and Mesoporous Materials. 2005;79:165–169. doi: 10.1016/j.micromeso.2004.10.039. [Cross Ref]
108. Kralj M, Pavelić K. Medicine on a small scale. EMBO Rep. 2003;4(11):1008–1012. doi: 10.1038/sj.embor.7400017. [PMC free article] [PubMed] [Cross Ref]
109. Bedioui F. Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview. Coord Chem Rev. 1995;144:39–68.
110. Rhee P, Brown C, Martin M, Salim A, Plurad D, Green D. et al. QuikClot use in trauma for hemorrhage control: case series of 103 documented uses. J Trauma. 2008;64(4):1093–1099. doi: 10.1097/TA.0b013e31812f6dbc. [PubMed] [Cross Ref]
111. Adamis Z, Tatrai E, Honma K, Six E, Ungvary G. In vitro and in vivo tests for determination of the pathogenicity of quartz, diatomaceous earth, modernite and clinoptilolite. Ann Occup Hyg. 2000;44(1):67–74. [PubMed]
112. Kogan FM, Nikitina OV. Solubility of chrysotile asbestos and basalt fibres in relation to their fibrogenic and carcinogenic action. Environ Health Perspect. 1994;102(5):205–206. doi: 10.1289/ehp.94102s5205. [PMC free article] [PubMed] [Cross Ref]
113. Baris YI, Sahin AA, Ozemi M, Kerse I, Ozen E, Kolacan B. et al. An outbreak of pleural mesothelioma and chronic fibrosing pleurisity in the village of Karani/Urgup in Anatolia. Thorax. 1978;33:181–192. doi: 10.1136/thx.33.2.181. [PMC free article] [PubMed] [Cross Ref]
114. Cefali EA, Nolan JC, McConnell WR, Lowe Walters D. Bioavailability of silicon and aluminium from zeolite A in dogs. Int Journ Pharm. 1996;127(2):147–154. doi: 10.1016/0378-5173(95)04110-9. [Cross Ref]
115. Hartman RL, Fogler HS. Understanding the dissolution of zeolites. Langmuir. 2007;23(10):5477–84. doi: 10.1021/la063699g. [PubMed] [Cross Ref]
116. Thilsing-Hansen T, Jorgensen RJ, Enemark JM, Larsen T. The effect of zeolite A supplementation in the dry period on periparturient calcium, phosphorus, and magnesium homeostasis. J Dairy Sci. 2002;85(7):1855–1862. doi: 10.3168/jds.S0022-0302(02)74259-8. [PubMed] [Cross Ref]
117. Nielsen BD, Potter GD, Morris EL, Odom TW, Senor DM, Reynolds JA. Training distance to failure in young racing quarter horses fed sodium zeolite a. J Equine Vet Sci. 1993;13:562–567. doi: 10.1016/S0737-0806(06)81526-1. [Cross Ref]
118. Lang KJ, Nielsen BD, Waite KL, Hill GM, Orth MW. Supplemental silicon increases plasma and milk silicon concentrations in horses. J Anim Sci. 2001;79(10):2627–2633. [PubMed]
119. Lang KJ, Nielsen BD, Waite KL, Link J, Hill GM. Increased plasma silicon concentrations and altered bone resorption in response to sodium zeolite A supplementation in yearling horses. J Equine Vet Sci. 2001;21:550–555. doi: 10.1016/S0737-0806(01)70161-X. [Cross Ref]
120. Turner KK, Nielsen BD, O’Connor CI, Robison DS, Rosenstein DS, Marks BP. et al. Sodium zeolite a supplementation and its impact on the skeleton of dairy calves. Biol Trace Elem Res. 2008;121(2):149–159. doi: 10.1007/s12011-007-8040-4. [PubMed] [Cross Ref]
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Wto Gru 01, 2015 14:38   

Cytat:
Barodon
Nonspecific immunostimulator BARODON. The composition of the anionic
mineral complex BARODON is as follows: 600 g of sodium metasilicate
(Na2SiO3 commercialized disodium trioxosilicate extracted from plants; Nederland
B.V., The Netherlands), 300 g of potassium carbonate (K2CO3), 9 g of
sodium carbonate (Na2CO3), 9 g of sodium borate (Na2B4O7), 900 g of sucrose
(C12H22O11), 10 mg of silver nitrate (AgNO3), 30 mg of sodium chloride (NaCl),
and 120 mg of sodium thiosulfate (Na2S2O3) dissolved in a total of 1,000 ml of
water. The product was patented in the United States (patent no. 6,447,810 B1
and 6,673,375 B2) and in Korea (patent no. 0331952), as well as in the Republic
of South Africa (patent no. 2003/3337) (10, 11, 12, 13). The specific gravity of the
product is 1.43, and the pH is 13.5. Barodon-biogenic feed is 10% diluent of
BARODON in water, and Omolene feed is equine fermented feed composed of
0.05% BARODON and 99.5% other ingredients generally used for feed (soybean
hulls, wheat hulls, molasses, corn, soybean meal, wheat, gluten feed, salt,
calcium carbonate, and pura mix).

Po prostu szkło wodne z niewielkim dodatkiem boraksu.
JW
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Wto Gru 01, 2015 20:24   

Cytat:

Barodon-biogenic feed is 10% diluent of BARODON in water, and Omolene feed is equine fermented feed composed of 0.05% BARODON and 99.5% other ingredients

Omolene 200
http://www.purinamills.co...15.pdf?ext=.pdf

Na 500 kg konia przypada 4000 g odżywki Omolene z dodatkiem 0,05% Barodonu, krzemowego preparatu. Zatem koń dostaje 300 mg krzemu.

Odnosząc to do 100 kg człowieka, wychodzi 50 mg krzemu w postaci szkła wodnego dodanego do jakiejś karmy, żeby mu nie spaliło gardła, bo szkło wodne ma pH-13
JW
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Wto Gru 15, 2015 17:31   

Cytat:
http://www.ncbi.nlm.nih.g.../ukmss-4021.pdf
SILICON AND BONE HEALTH R. JUGDAOHSINGH
Cytat:
Kelsay JL, Behall KM, Prather ES. Effect of fiber from fruits and vegetables on metabolic responses of human subjects. II. Calcium, magnesium, iron, and silicon balances. The American Journal of Clinical Nutrition. 1979; 32:1876–1880. [PubMed: 474478]

Fibre—Kelsay et al. (46), demonstrated that a high fibre diet (fruit and vegetables) reduces the gastrointestinal uptake of minerals, including Si. Urinary excretion of Si was 35% compared with 58% from a low fibre diet; while faecal excretion was 97% and 67% respectively. Both diets, however, produced a negative Si balance, although, this was more negative with the high fibre diet (−14.6 mg/day compared with −3.5 mg/day).

Wychodzi na to, że zarówno niskobłonnikowe jak i wysokobłonnikowe pożywienie zmniejsza wchłanianie soli mineralnych, z tym, że wysokobłonnikowe utrudnia absorpcję minerałów bardziej . Nie należy z niczym przesadzać.
JW
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Wto Gru 15, 2015 20:11   

JW napisał/a:

Odnosząc to do 100 kg człowieka, wychodzi 50 mg krzemu w postaci szkła wodnego dodanego do jakiejś karmy, żeby mu nie spaliło gardła, bo szkło wodne ma pH-13
JW

Jeszcze raz, szkło wodne jest żrące jak soda kaustyczna.
Żeby się suplementować tym wynalazkiem, podobnym do zarejestrowanego preparatu Barodon, 50 mg krzemu jest zawarte w 600 mg szkła wodnego czyli w jednej dziesiątej części łyżeczki do herbaty rozpuszczonej w 1 litrze wody Lub innego wodnego płynu. To wręcz śladowe ilości, jedna dziesiąta łyżeczki w litrze wody, albo jedna cała łyżeczka do herbaty na dziesięć litrów.
Dlaczego tak rozcieńczać? Po pierwsze, żeby nie przeżarło krtani.
Po drugie, bo kwas krzemowy, który powstaje z krzemianu sodu w wyniku hydrolizy, jest stabilny tylko w rozcieńczeniu do 2 mmol krzemu na litr, tzn. 420 mg krzemianu sodu lub 600 mg szkła wodnego. Powyżej stężenia 2 mmol kwas krzemowy ulega samorzutnej polimeryzacji do nierozpuszczalnego żelu w wodnym środowisku pH=7. Powyżej 2 mmol kwas krzemowy jest stabilny tylko w środowisku silnie kwasowym lub zasadowym, absolutnie nie obojętnym, dlatego szkło wodne pH-13 jest stabilne, ale kompletnie nie nadaje się do picia, bo żrące. Podobnie, kwas krzemowy jest stabilny w roztworach o kwasowości poniżej 2,5 pH, czyli np. w żołądku.
Dlatego te preparaty krzemowe są wściekle drogie, bo trudno uzyskać suplement stężonego krzemu, który zachował rozpuszczalność i przyswajalność dłużej, niż kilka dni.
JW
 
     
Witold Jarmolowicz 
Site Admin

Pomógł: 46 razy
Dołączył: 06 Sie 2007
Posty: 8791
Wysłany: Śro Gru 23, 2015 11:51   

Klasycznym preparatem krzemowym jest amerykański Biosil.
Po pierwsze jest drogi, miesięczna suplementacja kosztuje około 100 PLN.
Biosil
Jedna kropla zawiera 1 mg krzemu, dzienna dawka to dwa razy po 5 kropli zawierających 5 mg krzemu w postaci kwasu ortokrzemowego oraz 100 mg choliny w postaci chlorku, jako stabilizatora. Stąd wynika, że stężenie krzemu w Biosilu wynosi 2%
Ze względu na stabilność krzemu, Biosil jest kwaśny, ma pH-2 i dlatego należy dawkę wkroplić do 1/4 szklanki wody.
Lub 1/4 filiżanki wody (cup), jeżeli ktoś woli jednostki amerykańskie objętości.
Dzienna dawka 10 mg krzemu z Biosilu to asekuracyjnie niska ilość, ponieważ przyjmuje się dzienne zapotrzebowanie na krzem jako 20-50 mg.
Do tego przydałby się bor w ilości połowy krzemu, którego w Biosilu nie ma.

Polski preparat Silor+B zawiera krzem i bor, dzienna dawka dostarcza już więcej, bo 13 mg krzemu i 7 mg boru. Wszakże, podobnie jak Biosil, tani nie jest.

Alternatywą jest mieszanina krzemianu sodu, kwasu fosforowego, kwasu borowego, kwasu cytrynowego, ale jako, że substraty są bardzo żrące nie podamy szczegółowego przepisu.
JW
 
     
Wyświetl posty z ostatnich:   
Odpowiedz do tematu
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach
Dodaj temat do Ulubionych
Wersja do druku

Skocz do:  

Akademia Zdrowia Dan-Wit informuje, że na swoich stronach internetowych stosuje pliki cookies - ciasteczka. Używamy cookies w celu umożliwienia funkcjonowania niektórych elementów naszych stron internetowych, zbierania danych statystycznych i emitowania reklam. Pliki te mogą być także umieszczane na Waszych urządzeniach przez współpracujące z nami firmy zewnętrzne. Korzystając ze strony wyrażasz zgodę na używanie cookie, zgodnie z aktualnymi ustawieniami przeglądarki. Dowiedz się więcej o celu stosowania cookies oraz zmianie ustawień ciasteczek w przeglądarce.

Powered by phpBB modified by Przemo © 2003 phpBB Group
Template modified by Mich@ł

Copyright © 2007-2024 Akademia Zdrowia Dan-Wit | All Rights Reserved